skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Huixin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study explores the meteorological source and vertical propagation of gravity waves (GWs) that drive daytime traveling ionospheric disturbances (TIDs), using the specified dynamics version of the SD-WACCM-X (Whole Atmosphere Community Climate Model with thermosphere-ionosphere eXtension) and the SAMI3 (Sami3 is Also a Model of the Ionosphere) simulations driven by SD-WACCM-X neutral wind and composition. A cold weather front moved over the northern-central USA (90–100°W, 35–45°N) during the daytime of 20 October 2020, with strong upward airflow. GWs with ~500–700 km horizontal wavelengths propagated southward and northward in the thermosphere over the north-central USA. Also, the perturbations were coherent from the surface to the thermosphere; therefore, the GWs were likely generated by vertical acceleration associated with the cold front over Minnesota and South Dakota. The convectively generated GWs had almost infinite vertical wavelength below ~100 km due to being evanescent. This implies that the GWs tunneled through their evanescent region in the middle atmosphere (where a squared vertical wavenumber is equal to or smaller than 0) and became freely propagating in the thermosphere and ionosphere. Medium-scale TIDs (MSTIDs) also propagated southward with the GWs, suggesting that the convectively generated GWs created MSTIDs. 
    more » « less
  2. Abstract ICON observations were used to investigate local time (LT) and latitudinal variations of thermospheric meridional winds in the middle‐high thermosphere (160–300 km) during quiet times in 2020 June and December. At middle‐low latitudes (10°S–40°N), meridional winds were predominantly equatorward in the summer hemisphere while mostly poleward in the winter hemisphere. The meridional winds showed that the diurnal variation was dominant between ∼20°N and ∼40°N, but the semi‐diurnal variation played a leading role at lower latitudes (below ∼20°N) during solstice months. Thermosphere‐Ionosphere Electrodynamics General Circulation Model reproduced the ICON observed meridional wind variations qualitatively. A model diagnostic analysis shows that the pressure gradient force dominated the semi‐diurnal variation of the winds, while the Coriolis force played a leading role in the diurnal variation in June. In December, LT variations of meridional winds were primarily driven by pressure gradient and ion drag forces. During both months, the vertical viscosity was important, tending to balance the effects of pressure gradients. Additionally, semi‐diurnal variations of low‐latitude meridional winds in June were more affected by upward propagating tides than those in December. 
    more » « less
  3. Abstract The upper boundary height of the traditional community general circulation model of the ionosphere‐thermosphere system is too low to be applied to the topside ionosphere/thermosphere study. In this study, the National Center for Atmospheric Research Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (NCAR‐TIEGCM) was successfully extended upward by four scale heights from 400–600 km to 700–1,200 km depending on solar activity, named TIEGCM‐X. The topside ionosphere and thermosphere simulated by TIEGCM‐X agree well with the observations derived from a topside sounder and satellite drag data. In addition, the neutral density, temperature, and electron density simulated by TIEGCM‐X are morphologically consistent with the NCAR‐TIEGCM simulations before extension. The latitude‐altitude distribution of the equatorial ionization anomaly derived from TIEGCM‐X is more reasonable. During geomagnetic storm events, the thermospheric responses of TIEGCM‐X are similar to NCAR‐TIEGCM. However, the ionospheric storm effects in TIEGCM‐X are stronger than those in NCAR‐TIEGCM and are even opposites at some middle and low latitudes due to the presence of more closed magnetic field lines. Defense Meteorological Satellite Program observations prove that the ionospheric storm effect of TIEGCM‐X is more reasonable. The well‐validated TIEGCM‐X has significant potential applications in ionospheric/thermospheric studies, such as the responses to storms, low‐latitude dynamics, and data assimilation. 
    more » « less
  4. Abstract Ionospheric F‐region electron density is anomalously higher in the evening than during the daytime on many occasions in the summer in geomagnetic mid‐latitude regions. This unexpected ionospheric diurnal variation has been studied for several decades. The underlying processes have been suggested to be related to meridional winds, topside influx arising from sunset ionospheric collapse, and other factors. However, substantial controversies remain unresolved. Using a numerical model driven by the statistical topsideO+diffusive flux from the Millstone Hill incoherent scatter radar data, we provide new insight into the competing roles of topside diffusive flux, neutral winds, and electric fields in forming the evening density peak. Simulations indicate that while meridional winds, which turn equatorward before sunset, are essential to sustain the daytime ionization near dusk, the topside diffusive flux is critically important for the formation and timing of the summer evening density peak. 
    more » « less